
The effect of flaw shape on fracture initiation at a blunt flaw

E. Smith

Received: 2 June 2004 / Accepted: 15 September 2006 / Published online: 20 December 2006
� Springer Science+Business Media, LLC 2006

Abstract The author is involved in a wide-ranging

research programme, the objective being to extend the

fracture mechanics methodology for sharp cracks to

blunt flaws, so as to take credit for the blunt flaw

geometry. The approach is based on the cohesive

process zone representation of the micro-mechanistic

processes that are associated with fracture. An earlier

paper has derived a blunt flaw fracture initiation

relation which gives the critical elastic flaw-tip peak

stress rpcr (a ‘‘signifier’’ of a critical condition in the

process zone) in terms of the process zone material

parameters, subject to the proviso that the process

zone size s is small compared with the flaw depth

(length) and any characteristic dimension other than

the flaw root radius q. The relation has been derived

using a ‘‘two-extremes’’ procedure, whereby the sep-

arate rpcr solutions for small and large s/q are blended

together to give an all-embracing relation that is valid

for all s/q. A key feature of the relation is that rpcr

essentially depends on only one geometrical parame-

ter: the flaw root radius q. Though the relation has

evolved from a consideration of the characteristics of

one model, i.e. that of an elliptical flaw in an infinite

solid that is subjected to an applied tensile stress, it is

anticipated that the relation can be applied equally

well for a wide range of geometrical configurations

involving different flaw shapes. It is against this

background that the present paper demonstrates that

the relation also applies to the behaviour of an

intrusion type flaw in the surface of a semi-infinite

solid subjected to an applied tensile stress.

Introduction

Linear elastic fracture mechanics (LEFM) of cracks is

now well-established, and is based on the stress field in

the immediate vicinity of a crack tip being described by

the stress intensity factor K, with crack extension

occurring when K is equal to a critical value Kc, which

is referred to as the fracture toughness of the material.

This methodology has been applied to a wide range of

situations that are characterised by the micro-mecha-

nistic processes, which lead to fracture, being confined

to a small region in the vicinity of a crack tip. Kc is a

‘‘signifier’’ of a critical condition near the crack tip.

However, there are many engineering situations that

involve flaws or notches that are blunt rather than

being crack-like or sharp, and for such blunt flaws it is

overly conservative to treat them as cracks and use

LEFM methods. This is the case, for example with

stress concentrations that are design features, and with

bore-holes and excavations in geological structures.

Another example is Delayed Hydride Cracking (DHC)

initiation at the tip of a blunt debris fretting flaw in

CANDU (CANada Deuterium Uranium) nuclear

reactor Zr–2.5 Nb alloy pressure tube material [1]. It

is this latter case that has provided the motivation to

extend the fracture mechanics methodology for sharp

cracks to blunt flaws, so as to take credit for the blunt

flaw geometry in structural integrity assessments.
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The strategy has been to parallel, as far as possible,

the methods that have been developed for cracks. This

means that the approach has been based on the

cohesive process zone representation of the non-linear

processes that are associated with fracture, whereby

the non-linearity is modelled so that it is confined to an

infinitesimally thin strip. This type of representation

has been used to describe stress relaxation due to

plasticity at a stress concentration, where the process

zone is often referred to as a strip yield zone [2–4]. It

has also been applied to many other situations includ-

ing microcracking in concrete, rocks and many other

ceramic-type materials [5].

An earlier paper [6] has derived a blunt flaw fracture

initiation relation which gives the critical elastic flaw-

tip peak stress rpcr (analogous to Kc for a sharp crack)

in terms of the process zone material parameters,

subject to the proviso that the process zone size s is

small compared with the flaw depth (length) and any

other characteristic dimension other than the flaw root

radius q. The relation has been derived using a ‘‘two-

extremes’’ procedure, whereby the separate solutions

for small and large s/q are blended to give an all-

embracing relation that is valid for all s/q, a key feature

of the relation being that rpcr essentially depends on

only one geometrical parameter, namely the flaw root

radius q. Though the relation has evolved from a

consideration of the characteristics of one model, i.e.

that of an elliptical flaw in an infinite solid that is

subjected to an applied tensile stress, it is anticipated

that the relation can be applied equally well for a wide

range of geometrical configurations involving different

flaw shapes. It is against this background that the

present paper demonstrates that the relation also

applies to the behaviour of an intrusion type flaw in

the surface of a semi-infinite solid that is subjected to

an applied tensile stress.

The process zone approach

Figure 1 shows a general Mode I two-dimensional flaw

with a radius of curvature q, that is in a solid which is

subjected to an applied nominal stress, and has a

process zone of length s emanating from the flaw root.

The process zone is an infinitesimally thin strip within

which the restraining tensile stress is assumed to have a

uniform value pc. This is the classic Dugdale–Bilby–

Cottrell–Swinden (DBCS) [2, 3] representation, with

the stress uniformity assumption simplifying the con-

siderations considerably. The relative displacement

across the process zone at the flaw surface is vT, and

it is assumed that fracture initiates when vT attains a

critical value vc, a ‘‘signifier’’ of a critical condition in

the process zone. The material parameters pc and vc

are key inputs into the process zone methodology, and

provide the essential link between the methodology

and the mechanisms that are operative at the micro-

structural level. The process zone size s is determined

by recognising that the stress must be finite at the

leading edge of the process zone.

The values of pc and vc are assumed to be flaw

geometry independent, and consequently the values

for a blunt flaw are assumed to be the same as for a

sharp crack. With Mode I deformation, when the

methodology is applied to a long crack where the

process zone length s is small compared with the crack

length and any other geometrical dimension such as

the remaining ligament width, the DBCS representa-

tion gives

vc ¼
K2

IC

E0pc
ð1Þ

where KIC is the Mode I fracture toughness of the

material, and E0 = E/(1–m2) where E is Young’s mod-

ulus and m is Poisson’s ratio for the material outside the

process zone, with the material being assumed to

behave elastically.

The two-extremes procedure

As indicated in the Introduction, the two-extremes

procedure [6] derives a blunt flaw fracture initiation

relation which gives the critical elastic flaw-tip peak

stress rpcr, subject to the proviso that the process zone

size s is small compared with the flaw depth (length)

and any other characteristic dimension other than the

flaw root radius q. The relation is derived by blending

the separate rpcr solutions for small and large s/q to

give an all-embracing relation that is valid for all s/q.

In addressing the small s/q situation, let us consider

the Mode I model where there is a uniform stress (pc)

process zone emanating from the planar surface of a

semi-infinite solid (Fig. 2). It is assumed that the tensile
Fig. 1 Process zone of length s in the immediate vicinity of a
flaw root with radius of curvature q
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stress r(x) along the plane x2 = 0 in the absence of the

process zone is given by the relation

rðxÞ ¼ rp 1� x

h

� �
ð2Þ

where x is measured from x1 = 0 along the x1 axis. This

stress simulates the tensile stress in the immediate

vicinity of the root of a flaw with rp being the peak

tensile stress at the flaw surface while h is a length

parameter, which is a measure of the stress gradient at

the flaw root. The results of Tada et al. [7] have been

used [6, 8], in conjunction with the methodology

described in the preceding section, to give the critical

elastic flaw-tip peak stress rpcr required for fracture

initiation as

rpcr

pc
¼ 1þ 0:81KIC

pcðphÞ1=2
ð3Þ

this relation being applicable for any flaw provided that

the process zone length s is small compared with h,

which corresponds to KIC/pch
1/2 being small.

In applying relation (3) to the model of a two-

dimensional elliptical notch of root radius q and length

2a in an infinite solid that is subjected to an applied

nominal tensile stress rn (Fig. 3), we note that the

parameter h for this elliptical notch is given by the

expression [9]

h ¼ q
2

1þ 1

2

q
a

� �1=2
� �

= 1þ 3

4

q
a

� �1=2
� �

ð4Þ

an expression which checks with the well known

solution [10] for a circular hole, i.e. h = 3a/7 when

q = a. If we focus attention on flaws for which 0 < q/

a < 1, i.e. those which are sharper than a circular hole,

then expressions (3) and (4) allow the critical failure

stress rpcr to be given by the relation

rpcr

pc
¼ 1þ kKIC

pcðpqÞ1=2
ð5Þ

where

k ¼ 0:81ðq=hÞ1=2 ð6Þ

is weakly dependent on the ratio q/a, i.e. it varies

between 1.14 for a very sharp flaw (q/a fi 0) when the

near-tip flaw profile becomes parabolic, and 1.24 for a

circular flaw (q/a = 1). Noting relation (4) and the

qualification with regards to the viability of relation

(3), it follows that relation (5) is applicable provided

that the process zone length s is small compared with q,

which corresponds to KIC/pcq
1/2 being small.

Now let us proceed to the other extreme, where

the process zone size is large compared with q, i.e.

KIC/pcq
1/2 is large, though is still small compared

with the flaw depth (length). In this case, the effective

stress intensity factor KI required for fracture initia-

tion must equal KIC. But KIC = rn(p a)1/2 with

rpcr/rn = Kt = 1 + 2(a/q)1/2 for the elliptical flaw model

(Fig. 3), where Kt is the elastic stress concentration

factor and it therefore follows that

rpcr

pc
¼ 2KIC

pcðpqÞ1=2
ð7Þ

as q fi 0. This relation is strictly valid only for the

elliptical flaw model, and for other flaw configurations,

relation (7) is replaced by the more general relation

rpcr

pc
¼ lKIC

pcðpqÞ1=2
ð8Þ

where l is given by the expression

l ¼ rpðpqÞ1=2

KI
ð9Þ

Fig. 2 The planar surface model
Fig. 3 Model of an elliptical flaw in an infinite solid subjected to
an applied nominal tensile stress r22 = rn
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in the limit as q fi 0, where rp is the peak stress at the

flaw root and KI is the stress intensity factor in the

limiting situation; l is of course equal to two for the

elliptical flaw model.

With h = KIC/pc(pq)1/2, relation (5) for the small s/q
situation and relation (8) for the large s/q situation can

be written respectively as

rpcr

pc
¼ 1þ kh ðsmallhÞ ð10Þ

and

rpcr

pc
¼ lh ðlargehÞ ð11Þ

with k being given by relation (6) and l being given

by relation (9). These relations are applicable to a

general flaw, not necessarily an elliptical flaw, subject

of course to the proviso that the process zone is small

compared with the flaw length (depth) or any other

characteristic length, such as remaining ligament

width. The simplest functional relation that satisfies

both relations (10) and (11) is

rpcr

pc
¼ 1þ hðkþ lhÞ

ð1þ hÞ ð12Þ

This is a simple expression that is exact for both

small and large h and we assume that it is reasonably

accurate for intermediate h values. The reasonableness

of this assumption has been tested by appealing to the

analytical results for the analogous Mode III elliptical

flaw model [1, 8]. In this case l = 1 and k = 1,

irrespective of the value of q/a, and the resulting rpcr

expression is in fact exact for intermediate h values.

The author (unpublished work) has also tested the

assumption against the analytical results for the Mode

III key-hole model, albeit for the limiting case where

q/a is vanishingly small (a is the flaw depth and q the

hole radius). In this case l = 21/2 and k = 1 and the

resulting rpcr expression is in very close agreement

with the exact results for intermediate h values. In the

light of these accords it is reasonable to assume that

relation (12) is reasonably accurate when applied to

Mode I scenarios for intermediate h values, as well as

small and large h values.

Returning to the elliptical flaw model (Fig. 3), we

remember (see the comments following relation (6))

that the parameter k only varies between 1.14

(q/a fi 0) and 1.24 (q/a = 1) while l = 2. Inspection

of relation (12) shows that if we input k = 1.14

and l = 2, then the resulting relation

rpcr

pc
¼ 1þ hð1:14þ 2hÞ

ð1þ hÞ ð13Þ

approximates to relation (12) to within 2%. Relation

(13) is an improvement upon a Mode I simplified

relation suggested earlier [1, 8]. This relation was

rpcr

pc
¼ 1þ 2h ð14Þ

which satisfies the large h condition (see relation (11))

and the condition that rpcr/pc = 1 when h = 0, but it

does not satisfy the small h condition (see relation

(10)).

Support for the viability of relation (13) is provided

by the numerical results of Vitek [11]. He analysed the

(Mode I) model in Fig. 3 by representing the displace-

ment discontinuity across the process zones at the

notch roots by discrete dislocations, and reducing the

problem to the solution of a system of linear equations.

Then, albeit guided by the analogous Mode III

analytical solution [4], he constructed an empirical

formula which approximately fitted the numerical

results. As indicated in earlier work [1, 8], for the case

where the flaw root radius and the process zone length

are both small compared with the flaw length, his

approximate empirical formula was equivalent to

relation (14) and thus very close to relation (13).

Relation (12) is quite general and gives rpcr pro-

vided we know the values of the parameters k and l,

which can be obtained from respectively relations (6)

and (9), which depend respectively on a knowledge of

the local stress distribution in the immediate vicinity of

the flaw root (which gives the parameter h), and the

rp–KI relation for the flaw in question. However, it

would be far easier if we could simply use relation (13)

which, as it stands, strictly refers to the model of an

elliptical flaw in an infinite solid for the limiting case

where the flaw is sharp (q/a fi 0) and the flaw root

profile is parabolic. In other words, we pose the

question as to whether relation (13) applies more

generally to other Mode I situations, albeit in an

approximate sense, subject of course to the proviso

that we are dealing with reasonably sharp flaws

(q/a < 1) and situations where the process zone is

small in comparison with the flaw depth (length). This

requires that the parameter h and the rp–KI relation

(i.e. the parameter l) are approximately dependent

only on q and not on other geometrical parameters.

(This is clearly not the case with Mode III situations

where l = 1 for an elliptical flaw and 21/2 for a key-hole

flaw). However, we believe that with Mode I defor-

mation, the parameter h and the rp–KI relation are
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approximately dependent only on q, and therefore that

relation (13) is applicable, to a reasonable degree of

accuracy, for a wide range of geometrical configura-

tions, including the case of a semi-elliptical flaw in the

surface of a semi-infinite solid. An objective of the

author’s research is, if possible, to support this view. It

is against this background that the next section

presents an analysis of the behaviour of an intrusion

type flaw in the surface of a semi-infinite solid that is

subjected to an applied tensile stress.

Intrusion type flaw analysis

Figure 4 shows schematically an edge-type intrusion

flaw (not a flaw with an elliptical profile) in the surface

of a semi-infinite solid that is subjected to an applied

tensile stress rn. The flaw has a depth a and root radius

q, with the profile being defined by the relation

�y

a
¼ �x

a

� �1=2 �x

a
þ 2q

a

� �1=2
" #

= 1� �x

a

� �1=2

ð15Þ

With this relation, �y!1as�x! a. Zheng [12] has

provided an expression which gives the tensile stress

r(x) at a distance x ahead of the flaw root. This

expression is

rðxÞ
rn
¼
�ð2a�aÞw6þ3aað2a�aÞw4�4a3aw3þ3a3a2w2�a4a3
	 


ð�w2þaaÞ3ð2a�aÞ
ð16Þ

where the parameters w and a are related to the flaw

depth a, flaw root radius q and distance x via the

relations

2w ¼ ðaþ aþ xÞ þ ðaþ aþ xÞ2 � 4aa
h i1=2

ð17Þ

and

a
a
¼ 1þ 2q

a

� �1=2

ð18Þ

With w/a = / and a/a = v, expression (16) can be

written in the form

rðxÞ
rn
¼
�ð2v�1Þ/6þ3vð2v�1Þ/4�4v3/3þ3v3/2�v4
	 


ð�/2þvÞ3ð2v�1Þ
ð19Þ

while relation (17) can be written in the form

2/ ¼ 1þ vþ x

a
þ 1þ vþ x

a

� �2

�4v

� �1=2

ð20Þ

Since we are interested in the behaviour of sharp

flaws for which q/a is not large, then provided that q is

not zero, relations (18) and (20) show that

/ � vþ w ð21Þ

with

w ¼ vx

aðv� 1Þ ð22Þ

whereupon w is small. Relations (18), (19), (21) and

(22) then show that

rðxÞ ¼ rp 1� x

h

� �
ð23Þ

with the peak stress rp, i.e. the value of r(x) when

x = 0, being given by the relation

rp

rn
¼ Kt ¼

1þ 2q
a

� �1=2
h i

3þ 2 2q
a

� �1=2
h i

2q
a

� �1=2
1þ 2 2q

a

� �1=2
h i ð24Þ

where Kt is the flaw tip stress concentration factor,

while the parameter h is given by the relation

h ¼ q
2

1þ 2

3

2q
a

� �1=2
" #

= 1þ 2q
a

� �1=2
" #

ð25Þ

This result compares with relation (4) for an

elliptical flaw in an infinite solid. It follows from

relations (6) and (25) that the parameter k is given by

the relationFig. 4 An intrusion type flaw
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k ¼ 0:81 2 1þ 2q
a

� �1=2
( )" #1=2

= 1þ 2

3

2q
a

� �1=2
" #1=2

ð26Þ

In determining the crack tip stress intensity factor KI

for the limiting case where q = 0 and the flaw degen-

erates into a (tapered) crack, with KI being defined in

accord with the relation

rðxÞ ¼ KI

ð2pxÞ1=2
ð27Þ

Zheng [12] has shown that

KI ¼
3

4
ð2paÞ1=2rn ð28Þ

a relation that can be obtained from relations (19) and

(20) noting that relation (18) gives v = a/a = 1. Since

relation (24) gives

rp

rn
¼ 3

a

2q

� �1=2

ð29Þ

in the limit as q fi 0, it follows from relations (9), (28)

and (29) that the parameter l is equal to 2.

Relation (26) shows that the parameter k is weakly

dependent on the ratio q/a, in that it only varies

between 1.14 and 1.25 as q/a varies between zero and

0.5. With the elliptical flaw (see the comments preced-

ing relation (13)); k only varies between 1.14 and 1.24

as q/a varies between zero and 1.0. Furthermore the

value of l, i.e. 2, is the same for both the elliptical and

intrusion type flaw. In the light of these similarities, it

may be concluded that relation (13), as well as applying

to an elliptical flaw, also applies approximately to an

intrusion type flaw over a wide range of intrusion flaw

geometries.

Discussion

Motivated by the technological problem [1] of DHC at

the tip of a blunt debris fretting flaw in CANDU

nuclear reactor Zr–2.5 Nb alloy pressure tube material,

the author is involved in a wide-ranging research

programme, whose objective is to extend the fracture

mechanics methodology for sharp cracks to blunt flaws,

so as to take credit for the blunt flaw geometry. The

approach is based on the cohesive process zone

representation of the micro-mechanistic processes that

are associated with fracture. The considerations have

been focussed primarily on situations where the pro-

cess zone size is small compared with the flaw size and

with relatively sharp flaws for which q=a ~\1, q being

the flaw root radius of curvature and a being the flaw

size. The main concern is with regard to Mode I

loading scenarios, although extensive use has been

made of Mode III simulation models to provide a guide

as to how to proceed with Mode I analyses. A key

objective has been to find a parameter, analogous to

the stress intensity factor K for a sharp crack, to

quantify fracture initiation; this parameter is the elastic

flaw tip peak stress rp with initiation occurring when rp

attains a critical value rpcr which is analogous to KIC

for a sharp crack.

In general the stress distribution in the vicinity of a

flaw root depends on rp, q and other geometrical

parameters as shown, for example, by the elliptical flaw

results (see Eqs. (2) and (4)), although it depends

approximately on only rp and q within restricted

ranges of geometrical configurations, a point that has

been recognised by other workers, for example Glinka

and Newport [13]. It is intuitively reasonable, there-

fore, to expect a similar behaviour pattern as regards

fracture initiation. The author has derived a fracture

initiation relation using a ‘‘two-extremes’’ procedure,

whereby the separate solutions for small and large s/q
(s is the process zone size) are blended together to give

an all-embracing relation that is valid for all s/q. In

general this relation depends on other geometrical

parameters other than the flaw root radius q (see

relation (12) where the parameters k and l are in

general geometry dependent) but the elliptical flaw

results in Section ‘‘The two-extremes procedure’’ show

(see relation (13)) that, within restricted ranges of

flaw geometries, i.e. for sharp flaws, rpcr depends, to a

high degree of accuracy, only on the process zone

material parameters KIC and pc via the parameter

h = KIC/pc(p q)1/2 and the flaw root radius q. The

important conclusion that arises from the work in this

paper (see Section ‘‘Intrusion type flaw analysis’’) is

the demonstration that relation (13) is also approxi-

mately applicable to the behaviour of an intrusion type

flaw in the surface of a semi-infinite solid that is

subjected to an applied tensile stress.

Further support for the wide-ranging applicability of

relation (13) is provided by a comparison of its

predictions with those obtained by a numerical engi-

neering procedure [1] that has been developed in the

context of the DHC problem. This procedure consists

of the following steps: (1) a cubic polynomial equation

is fitted to the elastic flaw tip stress distribution using

the least squares method; (2) generalised closed form

equations for the stress intensity factor and crack
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mouth opening displacement for cracks emanating

from the tips of blunt flaws for a wide range of flaw

geometries have been developed; (3) these generalised

equations have been incorporated into a closed form

process zone model, based on the cubic polynomial

stress distribution, to calculate the process zone

displacement at the flaw surface; (4) the equations of

step (3) are re-arranged to give the flaw tip peak stress

rpcr needed for fracture initiation. The numerical

engineering procedure has been applied [6] to 45�-V

flaws with finite root radius, while allowing for a finite

width (4 mm) of the configuration. Calculations were

performed for flaw depths of 0.25, 0.50, 0.75 and

1.0 mm, with appropriate input values of KIC (in the

context of this paper’s terminology) = 4.5 MPa
ffiffiffiffiffi
m
p

and pc = 450 MPa. K IC � KIH, the threshold stress

intensity for the extension of a sharp crack via the

DHC mechanism. The dependence of rpcr on flaw

depth was 2% or less, which is consistent with

relation (13) which exhibits no depth dependency.

The results are shown in Table 1, which also includes

results obtained by use of relation (13) noting that

h = KIC/pc(p q)1/2. The agreement between the two sets

of results is very good, which provides support for the

wide-ranging applicability of relation (13).

Before concluding this discussion it is important to

mention that although relation (13) involves only one

geometrical parameter: the flaw root radius of curva-

ture q through the parameter h = KIC/pc(p q)1/2, this

does not mean that other geometrical parameters,

for example flaw depth a, do not enter into the

considerations. They do, by virtue of the fact that the

nominal stress rn required for fracture initiation is

equal to rpcr/Kt where Kt is the flaw tip stress

concentration factor which increases with flaw depth

for a fixed q.

Conclusion

The paper, by analysing the behaviour of an intrusion

type flaw has provided further evidence to support a

simple relation that quantifies fracture initiation at the

root of a blunt flaw.
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